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FACTORING MULTIVARIATE POLYNOMIALS 
OVER LARGE FINITE FIELDS 

DAQING WAN 

ABSTRACT. A simple probabilistic algorithm is presented to find the irreducible 
factors of a bivariate polynomial over a large finite field. For a polynomial 
f (x, y) over Fq of total degree n, our algorithm takes at most 

4.89 2 n log n log q 

operations in Fq to factor f (x, y) completely. This improves a probabilistic 
factorization algorithm of von zur Gathen and Kaltofen, which takes 

O(n 1 l log n log q) 
operations to factor f (x, y) completely over Fq . The algorithm can be easily 
generalized to factor multivariate polynomials over finite fields. We shall give 
two further applications of the idea involved in the algorithm. One is concerned 
with exponential sums; the other is related to permutational polynomials over 
finite fields (a conjecture of Chowla and Zassenhaus). 

1. INTRODUCTION 

The factorization of polynomials over finite fields has been studied for a long 
time. However, an efficient algorithm for factoring univariate polynomials over 
finite fields was not presented until the late 1960's. Berlekamp [2] then devised 
a deterministic algorithm which factors a univariate polynomial of degree n 
over F in O(n3q) field operations. This running time is polynomial both in q 
n and q. Soon after, Berlekamp [3] made the running time polynomial in 
the input size, i.e., using logq rather than q, at the expense of introducing 
a probabilistic rather than a deterministic method. The Cantor-Zassenhaus [5] 
probabilistic version of the algorithm factors a univariate polynomial of degree 
n in O(n 3+n2 log n logq) operations. Various other algorithms for this problem 
are due to Rabin [17], Ben-Or [1], and Camion [4]. Unfortunately, there is no 
known deterministic method for factoring univariate polynomials over finite 
fields in time polynomial in the input size. 

The corresponding problem of factoring multivariate polynomials over fi- 
nite fields has recently been studied by numerous authors. There are several 
approaches. Lenstra [14] and Chistov-Grigoryev used the short vector algo- 
rithm for lattices from Lenstra, Lenstra, and Lovasz [13]. Their algorithms 
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are deterministic, and require O(n8 + n 3q) field operations to factor a bivari- 
ate polynomial of total degree n. By establishing an effective version of the 
Hilbert Irreducibility Theorem, von zur Gathen [7] gave a probabilistic algo- 
rithm to compute the factorization pattern of a multivariate polynomial (i.e., 
the degrees and the multiplicities of the irreducible factors of a given multi- 
variate polynomial). Utilizing similar ideas, von zur Gathen and Kaltofen [8] 
presented a probabilistic algorithm to factor a sparse multivariate polynomial. 

In [9] von zur Gathen and Kaltofen described a complete probabilistic multi- 
variate factorization method which uses Newton's iteration and linear equation 
systems. It takes O(n8 log n log q) field operations to factor a nice bivariate 

polynomial of total degree n . In general, it takes O(n 1 log n log q) field oper- 
ations to factor a bivariate polynomial of total degree n over a large finite field 
Fq. 

In this paper, we present a new probabilistic algorithm to factor bivariate 
polynomials over a finite field, which is simpler and faster than the above meth- 
ods. This algorithm takes at most O(n4,89 log2 n log q) field operations to factor 
a bivariate polynomial of total degree n over Fq . It can also be generalized to 
factor multivariate polynomials over finite fields in time polynomial in the total 
degree of the polynomial. However, we shall concentrate on the bivariate case. 

We remark that our algorithm can be adapted to many other fields instead 
of finite fields, for example, the rational number field. In this case, an interest- 
ing phenomenon is that, whenever the Berlekamp-Hensel algorithm succeeds in 
factoring the related univariate polynomial over the integers, our algorithm suc- 
ceeds in factoring the bivariate polynomial over the integers. See the remarks 
at the end of ?3 for more details. In view of this, we describe our main result 
in the more general setting as follows. 

Let F be a field (arbitrary effectively computable) and f(x, y) be a bivariate 
polynomial of degree n over F. By preprocessing f(x, y), we may suppose 
f(x, y) is nonsingular at infinity. We write 

(1) fPX Y) = fn(X 5 Y) + fn-1(Xx 5y) + **+ fO(X5 y), 

where fk (x, y) is the homogeneous part of degree k in f(x, y) . Let 

(2) tn(X S Y) = Pe, (x,5 Y). Pe, (x,5 y) 

be the prime factorization of fn (x, y) over F. Then we can deterministi- 
cally find all irreducible factors of f over F with at most 0(2tn3 log2 n) field 
operations in F. 

To apply the above result in a particular field, one needs to know a prepro- 
cessing algorithm and a univariate factorization algorithm. In the case of finite 
fields, this does not present a problem. In ?6, we shall show that a random uni- 
variate polynomial over F has small t, i.e., t < e log n . Combining this with q 
Berlekamp's probabilistic algorithm gives our algorithm, which takes at most 
O(n3+e log2 log2 n log q) = O(n4.89 log2 n log q) field operations. 
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2. MOTIVATION FOR THE ALGORITHM 

Before we give the algorithm in the next section, we would like to see what we 
can extract from the assumption that f(x, y) is reducible. This will produce 
the algorithm more naturally and serve as part of the proof of our algorithm in 
the next section. F is an arbitrary field in this section. 

For simplicity, we first suppose that f, (x, y) is squarefree, i.e., ej = 1 
(j = 1, ... , t) . Now, let f(x, y) be reducible over the field F. Then there 
are two nonconstant polynomials g(x, y) and h(x, y) over F such that 

(3) f(x, y) = g(x, y)h(x, y). 

Let deg(g(x, y)) = r and deg(h(x, y)) = s. Then, s = n - r. As in (1), we 
write 

(4) 9~(X, Iy) = gr(X I Y) + gr- I(X, Iy) + + 0(X I y), 

h(x, y) = hs(x, y) + hs_l (x, y) + + ho(x, y) . 

Substituting (4) into (3) and comparing the homogeneous part of degree k, we 
get 

fn =grhs , 

fn = grhs (sgr + hs ) 
(5) 

f-k = gh ( Ei=0 gr-ihs-k+i) 

where we define gk = hk = 0 for k < 0. 
We claim that g(x, y) and h (x, y) are uniquely determined by their highest- 

degree parts gr and hs, i.e., all the polynomials gi and h are uniquely deter- 
mined from f, grX and hs. In fact, dividing (5) by grhs = fn we have 

fn - I gr-I +h sl 

fn gr hs 

4-2- 1 hs-1 gr-2 +hs-2 

n6 gr hs 
(6) 

fn-k -Z1 gr-ihs-k+ gr-k + hs-k 

fn gr hs 

where 1 < k < n. 
Since gr and hs are relatively prime (fn is squarefree), from the first ex- 

pression of (6) we find that grI and hs - are uniquely determined and can 
be obtained, for example, by expanding the partial fraction of fnI fn and 
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then taking suitable partial sums (a more practical way is to use the Euclidean 
algorithm, as we will do in the algorithm). Similarly, the second expression of 
(6) implies that gr-2 and h,-2 can also be uniquely determined, and so on. In 
this way, we prove the claim. 

Above we showed that if f(x, y) = g(x, y)h(x, y), then the factors g(x, y) 
and h(x, y) can be constructively recovered using only g,(x, y) and h,(x, y) . 
So, by trying all possible pairs gr h, with grh, = An X we can find all pairs g, 
h with gh = f. This naturally suggests an algorithm for factoring f. More 
precisely, for each given pair g, X h, with grh, = fn , by the above constructive 
method we can produce two polynomial sequences gi (i = r, r - 1, ... , r - n) 
and hi (j = s, s-, ... , s-n). If gi = = 0 for all i, j < 0, then we do find 
a pair of factors g, h such that g = g, +gr-l + - * * +go X h=hs +hs-1 + +ho. 
Otherwise, f simply has no such factors, and we need to try another pair gr, 
hs with grih = fn. This forms the basic part of the deterministic algorithm. 
It clearly works for any field for which an algorithm for factoring univariate 
polynomials is given. 

There is an alternative in the construction of the above polynomial sequences. 
Without loss of generality, assume r < s. We may first construct only gi 
(i =r, r- 1, ..., O), h1 (j = s, s - 1, ..., s - r), and then check whether 
g = gr + * * * + go divides f or not. If g divides f, we get a factor; otherwise, 
we need to try another pair gr, hs with grhs = fn. 

We assumed that f, (x, y) is squarefree in the above discussion. If fn has 
repeated factors, but any of these repeated factors is relatively prime to fn- ' 
then the above argument still works. In this case, we claim that (gr, hs) = 1 
(the crucial point). Otherwise, let p(x, y) be a nontrivial prime factor of 
(gr, hs). The first two expressions of (5) would imply that p(x, y)IfnI and 

P 2(x, y) Ifn . This is a contradiction. Now, the crucial condition (gr, hs) = 1 
makes the rest of the above discussion work well. 

The above weaker condition can be formulated using singularities of a pro- 
jective curve. Let f(x, y) be given as in (1). Then f(x, y) defines a projective 
curve (possibly reducible) in P 2(F) by its homogenization: 

(7) 
f(5 Y5 

Z) 
=nXXI 

+ tn 
0(x .~ 

+ +fxy)zn. 

It is easy to verify that f is nonsingular at infinity (z = 0) if and only if 
any repeated factor of fn is relatively prime to fn_1 . Motivated by this, we 
introduce the following 

Definition 2.1. f is called "nice" with respect to z if the curve f(x, y, z) = 0 
has no singular points at infinity (z = 0) . 

Note that our nice polynomials are similar to the nice polynomials defined by 
von zur Gathen and Kaltofen [9]. In their paper, a nice polynomial f satisfies: 
f(x, 0) is squarefree and f is monic with respect to x. This later condition 
corresponds to our "normalized" polynomials (to be introduced). 



FACTORING MULTIVARIATE POLYNOMIALS 759 

We have seen that if f is nice with respect to z, an algorithm can be con- 
structed to factor f . In the expressions (6), all the gi and h are bivariate 
homogeneous polynomials. By dehomogenization, they are equivalent to uni- 
variate polynomials. This will simplify calculations in practice. To carry out this 
simplification, we can normalize f(x, y) by requiring f, (x, y) to be monic 
with respect to x. Under this assumption, dehomogenization of gi and hi 
and their homogenization with respect to y are simply inverse processes to 
each other. 

Definition 2.2. f is called "normalized" with respect to x if f, (x, y) is monic 
with respect to x. 

3. THE BASIC ALGORITHM 

In this section, F is still an arbitrary field. We give the basic algorithm 
for nice normalized polynomials. In many cases, a general polynomial can be 
preprocessed to become a nice normalized one, so the basic algorithm here can 
be applied in general. We also suppose an algorithm is given for factoring uni- 
variate polynomials over F. The algorithm will be allowed to be probabilistic, 
so that it will either return the correct answer or else fail, the latter with small 
probability. In the rest of this section, we assume that f is nice and normalized 
with respect to z and x, respectively. f has been given as in (1). 

Basic Algorithm. 
Input: A nice and normalized polynomial f(x, y) E F[x, y]. 
Output: A complete factorization of f (x, y) over F or failure. 
Step 1. Use the given algorithm for univariates to factor fn completely 

over F: 

fn(Xx 5 ) = Pe, (xx, Y). Pe, (X, y) 

where p, (x, y) are distinct prime factors of fn over F, monic with respect to 
x. If the probabilistic univariate procedure returns failure, then return failure. 
Otherwise, go to Step 2. 

Step 2. Consider all proper divisors of fn of the form Pe ...Pe 'k (1?< < 
pi k 

<lk ?t, 1? k < [t/2]). List them in a table, say, d1, ..., dN, where 

N=(1 )+ (2 )+ ...+ ( t/2] - 

Step 3. Choose any element d in the table of Step 2. Let deg(d) = r, 
gr(x) = d(x, 1), h,(x) = fn(x, 1)/d(x, 1). Use the Euclidean algorithm to 
find univariate polynomials u(x) and v (x) in F[x] such that 

(8) u(x)gr(x) + v(x)hs(x) = 1, 

where deg(u) <n - r = s and deg(v) <r. 
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Step 4. Inductively define the univariate polynomial sequences gi(x) (r-n < 
i < r) and h1(x) (s - n < j < s) as follows: 

k-1 

gr-k = V(X) fn-k - gr-ihs-k+i) mod gr(x), 

(9) k-i 

hs-k U(X) (fn-k 
- gr-ihs-k+i) mod hs(x), 

where fnfk = fn-k(X 1) and 1 < k < n. 
If deg(gi) > i or deg(hj) > j, then f has no such factors, and we go back 

to Step 3 and choose another d in the table. 
Step 5. Let Gi(x, y) and Hi(x, y) be the homogenization of gi and hi 

with respect to y such that deg(Gi) = i and deg(Hj) = j (O < i < r, 0 < j < 
s). Return 

g = Gr +Gr-I +...+GO 
h =Hs+Hs_ +.+Ho. 

Then g and h are two proper factors of f satisfying f = gh. In this case, g 
and h are still nice and normalized with respect to z and x. We repeat the 
above algorithm until we find all irreducible factors of f . 

As we pointed out in ?2, there is an alternative in Step 4 and Step 5. Hence, 
Step 4 and Step 5 can be replaced by the following Step 4'. 

Step 4'. Let r < s (if s < r, interchange the positions of g and h). 
Inductively define the univariate polynomial sequences gi(x) (0 < i < r) and 
h1(x) (s - r < j < s) as in (9). Let Gi(x, y) be the homogenization of gi 
such that deg(Gi) = i (0 < i < r) (note that for 0 < i < r one always has 
deg(gi) < i). Put 

g = Gr + Gr- I + + Go 

Check whether g divides f or not. If g divides f, we find a factor. Other- 
wise, go back to Step 3 and choose another d in the table. 

Proof of correctness of the algorithm. Recall the argument in ? 1. Instead of using 
partial fractions, we have now used the Euclidean algorithm. Clearly, we only 
need to prove that the Gi and H. are the same as the gi(x, y) and hi(x, y) 
in ?1. Now, (8) implies 

(10) gr(x) hu(x) _n 

Thus, for any univariate polynomial q(x) with deg(q) < n, we have 

q(x) _ v(x)q(x) u(x)q(x) 

(11l) fn(X) gr (x) hs(x) 
v(x)q(x) mod gr(x) u(x)q(x) mod hs(x) 

gr(x) hs(x) 
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Now, comparing (11) and (6) (noting that f is normalized), we find that Gi = 

gi and Hi = hi. This proves the correctness of the Basic Algorithm. o 

For the analysis of running time, we assume that the factorization procedure 
used in Step 1 to factor a univariate polynomial of degree n takes at most T(n) 
operations in F. We will allow a probabilistic procedure, which either correctly 
returns an irreducible factor or else fails. 

Theorem 3.1. Let f(x, y) E F[x, y] be a nice and normalized polynomial of 
degree n, and assume that Step 1 of the Basic Algorithm does not return failure. 
Then the Basic Algorithm deterministically finds all irreducible factors of f in 

0(2tn3 log4 n) + T(n) operations in F, where log4 n can be replaced by log2 n 
if F has more than 2n elements. 

Lemma 3.2 [9]. Let F be an arbitraryfield, and r(x) E F[x] of degree d. Then 
an arithmetic operation (+, -, multiplication, and division by an invertible 
element) in F[x]/(r(x)) can be performed in 0(d log4 d) operations in F. If 
the cardinality qf F is at least 2d, then it can be performed in 0(d log2 d) 
operations. 

Proof of Theorem 3.1. Lemma 3.2 shows that Step 3 and Step 4 take 0(n3 log4 n) 
operations in F. By the inequality for N in Step 2, we deduce that the algo- 
rithm can be performed in 0(2tn3 log4 n) + T(n) operations. The theorem is 
proved. 0 

Remarks. (i) The above algorithm has a bottleneck quite similar to that of the 
Berlekamp-Hensel algorithm for factoring a univariate polynomial over the in- 
tegers, see [ 1 1]. In Step 2, we may have to test as many as 2t 1 potential factors 
d(x) of f,. If t is large, this presents an exponentially bad case. However, 
if we combine the Berlekamp-Hensel algorithm and our algorithm to factor a 
bivariate polynomial f of degree n over the integers, we find the following 
remarkable fact: If the Berlekamp-Hensel algorithm succeeds in factoring the 
univariate polynomial fn over the integers (this forces t to be relatively small), 
then our algorithm will succeed in factoring f over the integers. In view of 
Landau's comments in her survey article [12], the Berlekamp-Hensel algorithm 
is considered to be a practical one for factoring a univariate polynomial over the 
integers. Thus, we expect that our algorithm is practical for factoring bivariates 
over the integers. 

(ii) In Step 2, we order the elements dl,..., dN in such a way that di has 
no more distinct prime factors than dj (i < j) does. If f is reducible and the 
ordering is fortunate, then one can find a factor of f in only one step! On the 
other hand, if f is irreducible, then no best ordering exists; any ordering takes 
the same amount of time. It is an interesting but seemingly difficult problem 
to obtain an optimal ordering method. This question is equivalent to finding a 
factor d of fn such that f has a factor of the form d(x, y) + lower degree 
terms. 
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(iii) The above algorithm (in Step 2) takes at most N steps to factor f 
completely. However, it will take exactly N steps to prove that an irreducible 
polynomial is irreducible. Hence, this algorithm is more suitable for factoring 
a polynomial with many factors. On the other hand, if f has only a few 
factors, then the Hilbert Irreducibility Theorem shows that t is often small. By 
preprocessing f again, as we shall do in ? 5, we can expect to obtain smaller t, 
and then the algorithm can be applied. 

Definition 3.3. Let c be a positive constant. We define the Basic Algorithm C to 
be the Basic Algorithm given above except that in Step 1 of the Basic Algorithm 
we return failure whenever t > clog n . 

Corollary 3.4. Basic Algorithm C can be performed in O(n3+clog2 log4 n) opera- 
tions, where log4 n can be replaced by log2 n if F has more than 2n elements. 

In the case of finite fields or number fields, we shall show in ?6 that a random 
univariate polynomial of degree n has t < e log n . Hence, we can take c > e 
in Basic Algorithm C. 

4. BIVARIATE FACTORING OVER LARGE FINITE FIELDS 

In this section, we give a probabilistic algorithm which completely factors an 
arbitrary bivariate polynomial of degree n over a finite field. 

For the convenience of time analysis, we assume that F = Fq is a large finite 

field compared to the degree of f . More precisely, we suppose q > n . If F 
q 

is a small finite field, then we can first extend F to get a larger field, and apply 
the algorithm to the bigger field, as von zur Gathen and Kaltofen did in [9]. We 
note that the preprocessing stage (Step 1-Step 5) of the algorithm given here 
also works for many other fields; in particular, it works over algebraic number 
fields. 

Let f(x, y) be any bivariate polynomial over Fq . The following algorithm 
converts f into a nice normalized polynomial and gives a complete factoriza- 
tion of f over Fq. Note that in Step 5, we have a constant c > e to be 
determined. How to choose the value of c depends on the requirement for 
failure probability. 

Bivariate Factoring C. 
Input: A polynomial f (x, y) E Fq[x, y] of total degree n . 
Output: A complete factorization of f over Fq or failure. 
Step 1. Check squarefreeness. Compute fx = Of/Ox and f = Of/Dy. If 

fix = fy = 0, then f = 5?I J~n /i1x'~yp , where p is the characteristic of F 
Let g = E2 j<n f5i1j'PXy ; then g is a factor of f and f = gp. In this case, 
replace f by g and factor g. 

If fix $ 0?, or $ :& 0, compute the greatest common divisor d = (ff, fx) or 

(f, ,f respectively. Replace f by L and factor L (L is squarefree). Thus, 
fL ad sa in the following steps we assume f is squarefree. 
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Step 2. Normalize f with respect to y. Let f = f(x, y) = fn + + f. 
Choose an element bo in F satisfying fn(boy, y) = yntf(bo, 1) $ 0 (this can 
be done if q > n). Then 

f*( 5 =f (x + boy, y) 

fn (bo, 1) 

is a normalized polynomial with respect to y. 
Step 3. Transform to a nice polynomial. Compute the g.c.d. of the resultants 

Ry1X)- (Resy f* at , Res f* a* 

This is a univariate polynomial in x of degree < n(n - 1) < n . Since f* is 
squarefree, Ry (x) $ 0 . Choose a nonzero element a in F satisfying Ry (a) $ 0 

(this can be done if q > n 2). Using the same symbol f* for the homogenized 
polynomial f*(x, y, z) as for f*(x, y), then 

f*(xy,z)=f* (x~ y x - z 

is a nice polynomial with respect to z. 
Step 4. Normalize f* with respect to x . Let f* = f*(x, y, 1) = fn + + 

fJ. Choose an element b in F satisfying fn (x, bx) = xntf (1, b) $ 0. Then 
f*(x bx +y) 

f* (X5 Y) An* 1(, b) 

is a normalized polynomial with respect to x. 
Step 5. Call procedure Basic Algorithm C with input f* E F[x, y], to return 

a complete factorization of f* with factors P1(x, y) E F[x, y] (i = 1, ... , 1), 
where 1 is the number of factors of f** . 

Step 6. Set ni = deg(Pi); return the following complete factorization of 
f(x, y) E F[x, y]: 

f(a + abob X ab) x y a) x - by x + bboy ) 

Proof. The correctness of Steps 1, 2, and 4 is obvious. For Step 3, suppose 
(x, y, 0) is a singular point of f* at infinity. Since f* is normalized with 
respect to y, (O, 1, 0) is not a point of the curve f* = 0. We must have 
x $ 0. This implies (a, ay/x, 1) would be a singular point of f*. This 
forces Ry (a) = 0, contradicting the choice of a. Step 6 is simply the inverse 
transformation. 0 

For a concrete estimate of the running time, as in [9] we have to imple- 
ment Step 1 of the procedure Basic Algorithm C. The probabilistic version of 
Berlekamp's univariate algorithm, due to Cantor and Zassenhaus [5], factors a 
polynomial of degree n in 

O(n3 + n log n log q) 
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operations in Fq . This algorithm can be written as a Las Vegas procedure, so 
that it either returns an irreducible factor or failure-the latter with probability 
at most 1/2. The cost of the Las Vegas univariate factoring procedure in Step 1 
of the Basic Algorithm is dominated by the cost of other steps. So we can apply 
that procedure several times, say n times, to obtain failure probability at most 

2~~~~~~~~~~ 
Theorem 4.1. Let q > n2 and c > e, and let f (x, y) E F [x, y] be a polyno- 
mial of total degree n over F . Then the algorithm Bivariate Factoring C with q 

input f can be performed in 0(n 3+c log 2g2 n log q) operations in F with 

failure occurring with probability at most nc(l-logc)/ V2r log n + 1/2q . 

Proof. In Step 1, the pth root and the g.c.d. can be computed respectively in 
O(n log q/p) and 0(n2 log2 n) operations in Fq . (See the proof of Theorem 3.2 

in [9].) Lemma 3.2 shows that Step 2, Step 4, and Step 6 all take 0(n2 log2 n) 
operations in Fq. In Step 3, the resultant and the g.c.d. algorithms can be 

performed in 0(n3) operations. (See the proof of Theorem 3.2 in [9].) The 
cost of the whole algorithm is dominated by the running time for Step 5, which 
is 0(n3+clog2 0g2 n + n(n3+ n2 lognlogq)) . By Theorem 6.4 in ?6, the failure 
probability of the algorithm is bounded by nc(l -logc) /27r log n + 1/2q. 0 

Taking c = e in Theorem 4.1, we deduce 

Corollary 4.2. Let q > n 2. Any bivariate polynomial over Fq of total degree n 

can be completely factored in O(n4,89 log2 n log q) operations, with failure prob- 
ability at most 1 / t -log . 

5. AN IMPROVED PROBABILISTIC VARIANT 

The algorithm given in ?4 is fast if we choose c to be small. Compared to 
the algorithm in [9], however, it has the disadvantage that the failure proba- 
bility is not very small. There are two ways to improve this. The first is to 
increase the value of c. This will increase the running time significantly, but 
the improvement in the failure probability is not very great. In the following, 
we give another way which seems to be efficient. 

An Improved Probabilistic Algorithm. 
Step 1. Check squarefreeness as in Step 1 of the Bivariate Factoring C. 
Step 2. Use the preprocessing stage (Steps 2-4 of the Bivariate Factoring C) 

to convert f into a normalized nice polynomial. Use the Basic Algorithm to 
extract all small factors of f, i.e., in Step 3 of the Basic Algorithm we only 
consider those elements d of the form pe', (x, y)...p'k (x, y) with k < c. 

Step 3. Check whether or not t(f4) < clog n. If yes, apply the Basic Algo- 
rithm to factor f completely. Otherwise, go back to Step 2 and repreprocess 
f in different ways (that is, randomly choose bo, a , and b satisfying the nec- 
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essary requirements in Steps 2-4 of the Bivariate Factoring C). One can repeat 
this process for up to 0(n) times. 

Remarks. (i) In the above algorithm, one can take c = 3, 4, 5, 6, or even 7, 
because n 71og2 < n4.9* 

(ii) We give a heuristic argument that the above algorithm should be efficient. 
First, if a squarefree bivariate f(x, y) has many factors, then it is likely we 
can find some of the factors in Step 2; this would decrease the degree of f and 
the number of factors. If, on the other hand, f(x, y) has only a few factors, 
then by repreprocessing f in different ways several times as in Step 3, one can 
expect that t (the number of distinct factors of f,) is small. In fact, this could 
be justified by using the effective Hilbert Irreducibility Theorem developed in 
von zur Gathen [7] if q is large. 

6. DISTRIBUTION OF POLYNOMIALS OVER FINITE FIELDS 

As we have just seen, we need to study the probability that a polynomial fn 
has small t. This question is clearly equivalent to the distribution problem of 
irreducible univariate polynomials. 

We consider the case when F = F is a finite field. For example, in the case q 
of a number field K, we can take a prime ideal P with sufficiently large norm 
q, in which case the residue class field is a large finite field Fq . It is well known 
that if a given polynomial f over K has a certain factorization pattern over K, 
then there exists a large residue class field over which its reduction has the same 
factorization pattern. Therefore, the probability P(deg(f) = n t(f) < clogn) 
over a large finite field F measures in some sense the corresponding probability q 
over the global field K. In the following, we assume that F = Fq is the field 
of q elements. 

Let Nr(n) be the number of monic univariate polynomials of degree n over 
Fq with no repeated factors and with exactly r distinct prime factors. We study 
the distribution of Nr(n) as r varies (1 < r < n). We want to show that a 
typical polynomial of degree n has no repeated factors and has no more than 
e log n factors. 

It is a classical result that 

(12) N, (n) = -j( )qd < lqn 
din 

Let Mn (q) be the number of monic univariate polynomials of degree n over 
Fq with at least one repeated prime factor. Then, by definition, we have 

(13) Mn (q) < E qiqJ < 2qiO 
2i+j=n, i>0 
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Let 1 < r < n. From equation (12), we have 

Nr(n) < - N (I) NIr) -r! 

(14) il +ir=nq ij 

< I I qn 

il +**.+ir=nf ij> 1 r 

Let 

br(n)= E 1 
il + .+i r=n, ij >I 1r 

and ar(n) = br(n)/r!. We have proved the following 

Lemma 6.1. Let 1 < r < n; then Nr(n) < ar(n)qfl. 

Lemma 6.2. For 2 < r < n, we have 

1 I logr 1 o r-2n) ar(n) <! (l ~7 + ) 

Proof. If we define bo(O) = 1, we have the following generating function for 
br(n): 

fr(x) br~ n (x n + ) =(log(,-X))r. 
n=r 

It is easy to see that 

I(x) = rfr I(x)(1 -x7 

Hence, we have the following recursive relations: 

n-1 
nbr(n) =r E br-1(k) 

k=r-I 

and 

n-1 

(15) ar(n)= n E ar-I(k) 
k=r-1 

By definition of ar(n), we have a (n) = /n . Now, (15) gives 

a2(n) = E < (log n+ 1), 
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In general, suppose Lemma 6.2 is true for some r - 1 (> 3). From (15), and 
by induction, we deduce that 

ar(n) < 1 E (lor k)+ k(r- k) 

n -2 (x(r - 2)! x(r o dx 

__1 K _log n log 
r 2 

-n t(r- 1)! (r -2)!) 

The second inequality is true because we extended the limits of integration, 
and the functions in the integrand have only one local minimum. The proof is 
complete. E 

Lemma 6.3. Let cr(n) = 
I logr 1 n/(r - 1)!; then for n > 1 and c > e we have 

E Cr (n) < 1 nc(l-logc) 

clogn<r<n 27zlogn 

Proof. In the inequality 
m r x m+1 

eX ex (x > O) 
r=O 

we put x = logn and m = [clogn]; then 

cr(n) < 
I|?1 

flogrn < (log n)m+1 
clogn<r<n r=O 

Now, Stirling's approximation formula for factorials implies that the rightmost 
term is 

< e (elogn m+1 (e)IOcflog= 1 c(l-logc) 

27r(m+ 1) m+ 1 J) = 2Iog n 2zlogn 

So Lemma 6.3 is correct. o 

Lemmas 6.1-6.3 and (13) together imply the following 

Theorem 6.4. For any n > 2 and c > e, one has 

P(fn E FT[x], deg(fn) = nlt(fn) < clogn) > 1 - 1 c(l -logc) 1 
q ~~~~~~~~~27r log n 

The theorem shows that the number of factors of a typical univariate poly- 
nomial of degree n is less than e log n . 

7. Two APPLICATIONS 

The basic idea involved in our algorithm has theoretical interest. It can be 
used to prove certain polynomials are absolutely irreducible (irreducible over 
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an algebraic closure of the ground field). Here we shall give only two examples. 
One is concerned with exponential sums; the other is related to permutational 
polynomials (the Chowla-Zassenhaus conjecture). We first discuss exponential 
sums. 

Let f(x1, .. , xn) (n > 2) be a polynomial of degree d with integral coef- 
ficients. Let p be a prime number and Fp.. be the finite field of pm elements. 
Define the exponential sum 

S(p f) =x E -P"F((X,.. n) 

where exp(x) = e . It is a classical problem of number theory to give a good 
estimate for IS(pm, f)I . For a nice account of this subject, see [10 and 18]. A 
deep theorem of Katz [10, Theorem 2.3.1, p. 41] shows that if f (x1, ... . Xn)-T 
is irreducible over an algebraic closure of the rational function field Q(2T), then 
one has 

(16) IS(pm f) I ?mnl) 

for all sufficiently large primes p (depending on f) and all m, where the 
implied constant depends only on deg(f). This result is best possible under 
the given conditions. 

We shall give a large class of such polynomials. 

Theorem 7.1. Let F be any field and f be any polynomial over F of degree 
d > 0 with n (n > 1) variables. We write f in the form 

(17) f = fd + fd-1 + + fo 

where ]i (i = 0, ..., d) is the homogeneous part ofdegree i in f . Suppose that 

g.c.d(fd, 5ff_1) is squarefree (for example, this is true when fd is squarefree). 

Then, among the polynomials fa = f(xi, ... , Xn) - a (a E F), at most 2d of 
them are reducible in the algebraic closure F. 

Remark. In the case of algebraic number fields or finite fields with large char- 
acteristic, we can improve the bound 2d to O(d . However, the proof is not 
simple. 

Proof of Theorem 7.1. Similar to the discussion of ?2. Let X = (xi, ...X, Xn). 
If fa (X) is reducible in F, then we can write 

fa(X) = g(X)h(X), 

g(X) =gr(X) + + go(X) 
(18) h(X) hs(X) + + ho(X) 

fd (X) = gr(X)hs (X) 

where 0< deg(g) =r< d. 
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The discussion of ?2 shows that, if g.c.d(fd, fdf1) is squarefree, then g(X) 
and h(X) (hence also a) are uniquely determined by g,(X), h,(X), and 

fd(X) + * * + f1(X) . Now, by (18), we know there are at most 2d such pairs 

g,(X), h,(X), so there are at most 2d values a E F such that fa(X) is re- 
ducible in F. E 

Corollary 7.2. Under the assumptions of Theorem 7.1, we have that f(X) - T 
is irreducible over any algebraic closure of F(T), hence irreducible over F. 
Proof. Suppose f(X) - T is reducible in some algebraic closure of F(T); then 
for any value a E F, f (x) - a is reducible. This contradicts Theorem 7.1. n 

Corollary 7.3. Let f(X) be an integral polynomial given in the form (17). If 
g.c.d(fd ff1 _1) is squarefree, then (16) holds. 

This corollary follows from Katz's theorem and Corollary 7.2. 
We now turn to permutational polynomials over finite fields. Let Fp be the 

finite field of p elements. A polynomial f(x) E Fp (x) is called a permuta- 
tional polynomial over Fp if the values f(a) (a E Fp) are distinct. For the 
general theory of permutational polynomials, see [1 5]. Chowla and Zassenhaus 
[6] conjectured that if f (x) is an integral polynomial of degree > 2 and p is 
a sufficiently large prime for which f (x) is a permutational polynomial over 
Fp, then for no a E F * is f(x) + ax a permutational polynomial over F . 

p p 
Mullen and Niederreiter [16] have recently shown that the Chowla-Zassenhaus 
conjecture is true for a special class of polynomials (the so-called Dickson poly- 
nomials). Using Theorem 7.1, we have 

Corollary 7.4. Let f(x) be an integral polynomial of degree d > 1 and p be 
a sufficiently large prime. Then f(x) - ax can be a permutational polynomial 
over Fp for at most 2d values of a e? F. 
Proof. By Theorem 7.1, we know that 

F( Y) (f (x) + ax) - (f (y) + ay) f (x) - f (y) + 
x -y x -y 

is absolutely irreducible over Fp except for at most 2d values a. If Fa(x, y) 
is absolutely irreducible over Fp , then for large p the Riemann Hypothesis for 
curves over finite fields shows that Fa(x, y) = 0 has a solution with x $ y in 
Fp, i.e., f(x) + ax is not a permutational polynomial over Fp . This proves 
the corollary. o 

As we remarked before, the bound 2d in Corollary 7.4 can be improved to 
2 d . But the proof would not be elementary. 
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